Question		ion	Answer	Marks	Guidance	
1	(i)		$\frac{1}{\sqrt[3]{1-2x}} = (1-2x)^{-1/3}$	B1	n = -1/3. See below SC for those with $n = 1/3$	
			$=1+(-\frac{1}{3})(-2x)+\frac{(-\frac{1}{3})(-\frac{4}{3})}{2!}(-2x)^{2}+\dots$	M1	All three correct unsimplified binomial coefficients (not nCr) soi condone absence of brackets only if it is clear from subsequent work that they were assumed	
				B1	$1 + (2/3)x + \dots$ www	
			$=1+\frac{2}{3}x+\frac{8}{9}x^{2}+$	B1	$(8/9)x^2$ www in this term	
					If there is an error, in say, the third coefficient of the expansion then M0B1B0 is possible	
					SC For $n = 1/3$ award B1 for $1 - (2/3)x$ and B1 for $-(4/9)x^2$ (so max 2 out of the first 4 marks)	
			Valid for $-\frac{1}{x} < x < \frac{1}{x}$ or $ x < \frac{1}{x}$	B1	Independent of expansion. Accept, say, $-1/2 < x < 1/2$	
			2 2 2 2		or $-1/2 \le x < 1/2$ (must be strict inequality for $+1/2$)	
				[5]		
1	(ii)		$\frac{1-3x}{\sqrt[3]{1-2x}} = (1-3x)(1+\frac{2}{3}x+\frac{8}{9}x^2+)$			
			$=1+\frac{2}{x}+\frac{8}{x^2}-3x-2x^2+$	M1	Use of $(1-3x) \times \text{their}(1+(2/3)x+(8/9)x^2+\cdots)$ and attempt at	
			3 9		removal of brackets (condone absence of brackets but must have two terms in x and two terms in x^2)	
				A1ft	Correct simplified expansion following their expansion in (i). This mark is dependent on scoring both M marks in (i) and (ii)	
			$=1-\frac{7}{3}x-\frac{10}{9}x^{2}+$	A1	cao or B3 www in either part SC following either M0 or M1, B1 for either a or b correct	
				[3]		

Question	Answer	Marks	Guidance	
2	$(4+x)^{\frac{3}{2}} = 4^{\frac{3}{2}} (1+\frac{1}{4}x)^{\frac{3}{2}}$	M1	dealing with the '4' to obtain $4^{3/2}(1+\frac{x}{4})^{3/2}$	
			(or expanding as $4^{3/2} + \frac{3}{2}4^{1/2}x + \binom{3}{2}\binom{1}{2}4^{-1/2}\frac{x^2}{2!} + \dots$ and having all the powers of 4 correct)	
	$= 8(1 + \frac{3}{2}(\frac{1}{4}x) + \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{1}{2!}(\frac{1}{4}x)^{2} + \dots$	M1	correct binomial coeffs for $n = 3/2$ ie 1, $3/2$, $3/2$. $1/2$. $1/2$! Not nCr form Indep of coeff of x Indep of first M1	
	= 8 + 3x	A1	8+3x www	
	$+3/16 x^{2}$	A1	$\dots + 3/16 x^2$ www Ignore subsequent terms	
	Valid for $-4 < x < 4$ or $ x < 4$	B1	accept \leq s or a combination of $<$ and \leq , but not $-4 > x > 4$, $ x > 4$, or say $-4 < x$ condone $-4 < x < 4$ Indep of all other marks	
		[5]	Allow MR throughout this question for $n = m/2$ where $m \in \mathbb{N}$, and m odd and then -1 MR provided it is at least as difficult as the original.	

Question		Answer	Marks	Guidance
3	(i)	$\frac{x}{(1+x)(1-2x)} = \frac{A}{1+x} + \frac{B}{1-2x}$		
		$\Rightarrow x = A(1 - 2x) + B(1 + x)$	M1	expressing in partial fractions of correct form (at any stage) and attempting to use cover up, substitution or equating coefficients Condone a single sign error for M1 only
				Condone a single sign error for wir only.
		$x = \frac{1}{2} \Longrightarrow \frac{1}{2} = B(1 + \frac{1}{2}) \Longrightarrow B = \frac{1}{3}$	A1	www cao
		$x = -1 \Longrightarrow -1 = 3A \implies A = -1/3$	A1	www cao
				(accept A/(1+x) +B/(1-2x), $A = -1/3$, $B = 1/3$ as sufficient for full marks without needing to reassemble fractions with numerical numerators)
			[3]	

Question	Answer	Marks	Guidance	
3 (ii)	$\frac{x}{(1+x)(1-2x)} = \frac{-1/3}{1+x} + \frac{1/3}{1-2x}$ $= \frac{1}{3} \Big[(1-2x)^{-1} - (1+x)^{-1} \Big]$	M1	correct binomial coefficients throughout for first three terms of	
	$= \frac{1}{3} [1 + (-1)(-2x) + \frac{(-1)(-2)}{2}(-2x)^2 + \dots - (1 + (-1)x + \frac{(-1)(-2)}{2}x^2 + \dots)]$	A1	either $(1-2x)^{-1}$ or $(1+x)^{-1}$ oe ie 1, (-1) , $(-1)(-2)/2$, not nCr form. Or correct simplified coefficients seen. $1 + 2x + 4x^2$	
	$=\frac{1}{3}[1+2x+4x^2+(1-x+x^2+)]$	A1	$1 - x + x^2$ (or 1/3/-1/3 of each expression, ft their <i>A</i> / <i>B</i>)	
			If $k(1-x+x^2)$ (A1) not clearly stated separately, condone absence of inner brackets (ie $1+2x+4x^2-1-x+x^2$) only if subsequently it is clear that brackets were assumed, otherwise A1A0.	
			Ignore any subsequent incorrect terms $\begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
	$=\frac{1}{3}(3x+3x^2+)=x+x^2+$ so $a = 1$ and $b = 1$	A1	or from expansion of $x(1-2x)^{-1}(1+x)^{-1}$ www.cao	
	OR $x (1-x-2x^2) = x (1-(x+2x^2))$ $= x (1+x+2x^2+(-1)(-2)(x+2x^2)^{2/2}+)$	M1	correct binomial coefficients throughout for $(1-(x+2x^2))$ oe (ie 1,-1), at least as far as necessary terms $(1+x)$ (NB third term of expansion unnecessary and can be ignored)	
	$= x (1 + x + 2 x^{2} + x^{2} \dots)$	A2	x(1+x) www	
	$= x + x^2$ so $a = 1$ and $b = 1$	A1	ww cao	
	Valid for $-\frac{1}{2} < x < \frac{1}{2}$ or $ x < \frac{1}{2}$	B1	independent of expansion. Must combine as one overall range. condone \leq s (although incorrect) or a combination. Condone also, say $-\frac{1}{2} < x < \frac{1}{2}$ but not $x < \frac{1}{2}$ or $-1 < 2x < 1$ or $-\frac{1}{2} > x > \frac{1}{2}$	
		[-]		

Question		on	Answer	Marks	Guidance	
4			$(1+2x)^{1/2} = 1 + \frac{1}{2}(2x) + \frac{\frac{1}{2}\cdot(-\frac{1}{2})}{2!}(2x)^2 + \frac{\frac{1}{2}\cdot(-\frac{1}{2})(-\frac{3}{2})}{3!}(2x)^3 + \dots$	M1	Do not MR for $n \neq 1/2$ All four correct binomial coeffs (not nCr form) soi Accept unsimplified coefficients if a subsequent error when simplifying.	
			$= 1 + x - \frac{1}{2} x^2 + \frac{1}{2} x^3 + \dots$	B1 B1 B1	Condone absence of brackets only if followed by correct work eg $2x^2 = 4x^2$ must be soi for second B mark. 1 + x www $\dots - \frac{1}{2}x^2$ www $\dots + \frac{1}{2}x^3$ www If there is an error in say the third coeff of the expansion, M0, B1, B0, B1 can be scored	
			Valid for $ x < 1/2$ or $-1/2 < x < 1/2$	B1 [5]	Independent of expansion $ x \le 1/2$ and $-1/2 \le x \le 1/2$ are actually correct in this case so we will accept them. Condone a combination of inequalities. Condone also, say $-1/2 < x < 1/2$ but not $x < 1/2$ or $-1 < 2x < 1$ or $-1/2 > x > 1/2$	

5 $(1+3x)^{\frac{1}{3}} = 1 + \frac{1}{3}(3x) + \frac{\frac{1}{3}\cdot(-\frac{2}{3})}{2!}(3x)^2 + \dots$ = $1 + x - x^2 + \dots$	M1 A1 A1	correct binomial coefficients $1 + x \dots$ $\dots - x^2$	ie 1, 1/3, $(1/3)(-2/3)/2$ not <i>nCr</i> form simplified www in this part simplified www in this part, ignore subsequent terms using $(3x)^2$ as $3x^2$ can score M1B1B0 condone omission of brackets if $3x^2$ is used as $9x^2$
Valid for $-1 \le 3x \le 1$ $\Rightarrow -1/3 \le x \le 1/3$	M1 A1	or $ 3x \le 1$ oe or $ x \le 1/3$ (correct final answer scores M1A1)	do not allow MR for power 3 or $-1/3$ or similar condone inequality signs throughout or say < at one end and \leq at the other condone $-1/3 \leq x \leq 1/3$, $x \leq 1/3$ is MOA0 the last two marks are not dependent on the first three

$6(i) \frac{3+2x^{2}}{(1^{2}x)(1-4) 1} = \frac{A}{+x} + \frac{B}{(1+x)(1-4)} + \frac{C}{x}$ $\Rightarrow 3+2x^{2} = A(1+x)(1-4x) + B(1-4x) + C(1+x)^{2}$	M1	Clearing fractions (or any 2 correct equations)
$x = -1 \implies 5 = 5B \implies B = 1 \ x = \frac{1}{4} \implies \frac{1}{3} = \frac{1}{25} \xrightarrow{C} \implies C = 2$ $\overline{8} \overline{16}$ coeff ^t of x^2 : $2 = -4A + C \implies A = 0$.	B1 B1 E1 [4]	B = 1 www C = 2 www A = 0 needs justification
(ii) $(1 + x)^{-2} = 1 + (-2)x + (-2)(-3)x^2/2! + \dots$ = 1-2 $x + 3x^2 + \dots$ $(1 - 4x)^{-1} = 1 + (-1)(-4x) + (-1)(-2)(-4x)^2/2! + \dots$ = 1 + 4x + 16x ² +	M1 A1 A1	Binomial series (coefficients unsimplified - for either
$\frac{3+2x^2}{+(\mathbf{k})^2(1-4x)} = (1+\bar{x}^2) + 2(1-4x)^{-1}$ $\approx 1 - 2x + 3x^2 + 2(1+4x+16x^2) = 3 + 6x + 35x^2$		or $(3+2x^2)(1+x)^{-2}(1-4x)^{-1}$ expanded
PhysicsAndMathsTutor.com	A1ft [4]	theirA,B,C and their expansions

	1		
7	$\sqrt{4+2x} = 2(1+\frac{1}{2}x)^{\frac{1}{2}}$	M1	Taking out 4 oe
	$= 2\{1 + \frac{1}{2} \cdot (\frac{1}{2}x) + \frac{\frac{1}{2} \cdot (-\frac{1}{2})}{2!} \cdot (\frac{1}{2}x)^2 + \frac{\frac{1}{2} \cdot (-\frac{1}{2}) \cdot (-\frac{3}{2})}{3!} \cdot (\frac{1}{2}x)^3 + \dots\}$	M1	correct binomial coefficients
	$=k\left(1+\frac{1}{4}x^{-\frac{1}{32}}x^{2}+\frac{1}{128}x^{3}+\right)$	A2,1,0	$\frac{1}{4}x, -\frac{1}{32}x^2, +\frac{1}{128}x^3$
	$= \left(2 + \frac{1}{2}x - \frac{1}{16}x^2 + \frac{1}{64}x^3 + \dots\right)$	A1cao	
	Valid for $-2 < x < 2$.	B1cao [6]	
		1	1